Homepage

Boilerplates

Whenever I start a project I often realize I don't remember all of the fundamental syntax to setting up some code or library, so I keep some snippets to get me started here

Flask

from flask import Flask, request, jsonify
import sqlite3

app = Flask(__name__)

# Function to access SQLite database
def access_database():
    conn = sqlite3.connect('database.db')
    cursor = conn.cursor()
    cursor.execute('SELECT * FROM table_name')
    data = cursor.fetchall()
    conn.close()
    return data

@app.route('/get_data', methods=['GET'])
def get_data():
    # Accessing query parameters from URL
    param_value = request.args.get('param_name')
    # Accessing data from database
    db_data = access_database()
    return jsonify({'param_value': param_value, 'database_data': db_data})

@app.route('/process_data', methods=['GET', 'POST'])
def process_data():
    if request.method == 'GET':
        param_value = request.args.get('param_name')
        db_data = access_database()
        return jsonify({'param_value': param_value, 'database_data': db_data})
    elif request.method == 'POST':
        data = request.json
        return jsonify({'message': 'Data submitted successfully'})
    else:
        return "Invalid mode"

if __name__ == '__main__':
    app.run(debug=True)

Tensorflow

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import SparseCategoricalCrossentropy
from tensorflow.keras.metrics import SparseCategoricalAccuracy

# Example data loading (replace with your own data loading code)
# X_train, y_train = load_data()

# Define the model
model = Sequential([
    Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
    Dropout(0.2),
    Dense(32, activation='relu'),
    Dropout(0.2),
    Dense(10, activation='softmax')
])

# Compile the model
model.compile(optimizer=Adam(learning_rate=0.001),
            loss=SparseCategoricalCrossentropy(),
            metrics=[SparseCategoricalAccuracy()])

# Print model summary
model.summary()

# Example training (replace with your own training code)
# history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

# Example inference (replace with your own inference code)
# y_pred = model.predict(X_test)

# Evaluate the model
# loss, accuracy = model.evaluate(X_test, y_test)
# print(f'Test loss: {loss:.4f}')
# print(f'Test accuracy: {accuracy:.4f}')

Pandas CSV

import pandas as pd

# Load CSV file into a DataFrame
file_path = 'your_file_path.csv'  # Replace with your CSV file path
df = pd.read_csv(file_path)

# Display basic information about the DataFrame
print("Shape of the DataFrame:")
print(df.shape)  # Display number of rows and columns
print("\nColumn names:")
print(df.columns)  # Display column names
print("\nData types:")
print(df.dtypes)  # Display data types of each column

# Display first few rows of the DataFrame
print("\nFirst 5 rows:")
print(df.head())

# Basic manipulations
# Example: Selecting specific columns
selected_columns = ['column_name1', 'column_name2']
subset_df = df[selected_columns]

# Example: Filtering rows based on a condition
filtered_df = df[df['column_name'] > 100]

# Example: Adding a new column
df['new_column'] = df['existing_column1'] + df['existing_column2']

# Example: Grouping and aggregating data
grouped_df = df.groupby('grouping_column').agg({'aggregated_column': 'mean'})

# Example: Sorting DataFrame by column
sorted_df = df.sort_values(by='sorting_column', ascending=False)

# Display modified DataFrame or results of manipulations
print("\nSubset DataFrame:")
print(subset_df.head())

print("\nFiltered DataFrame:")
print(filtered_df.head())

print("\nDataFrame with new column:")
print(df.head())

print("\nGrouped and Aggregated DataFrame:")
print(grouped_df.head())

print("\nSorted DataFrame:")
print(sorted_df.head())

HTML

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>I hate frontend</title>
    <style>
        /* Add your CSS styles here */
        body {
            font-family: Arial, sans-serif;
            line-height: 1.6;
            margin: 20px;
            padding: 0;
        }
        /* Example of CSS styles */
        .container {
            max-width: 800px;
            margin: auto;
        }
        h1 {
            color: #333;
            text-align: center;
        }
        p {
            color: #666;
        }
    </style>
</head>
<body>
    <div class="container">
        <header>
            <h1>HTML Sucks</h1>
        </header>
        <main>
            <section id="section1">
                <h2>Section 1</h2>
                <p>This is some content for section 1.</p>
            </section>
            <section id="section2">
                <h2>Section 2</h2>
                <p>This is some content for section 2.</p>
            </section>
        </main>
        <footer>
            <p>&copy; 2024 My Company. All rights reserved.</p>
        </footer>
    </div>
</body>
</html>

CSS (File)

/* This is a comment */
* {
    margin: 0;
    padding: 0;
    box-sizing: border-box;
}

body {
    font-family: Arial, sans-serif;
    line-height: 1.6;
    background-color: #f0f0f0;
    color: #333;
}

.container {
    max-width: 1200px;
    margin: auto;
    padding: 20px;
}

header {
    text-align: center;
    margin-bottom: 20px;
}

header h1 {
    font-size: 2.5em;
    color: #333;
}

main {
    padding: 20px;
}

section {
    margin-bottom: 40px;
}

h2 {
    font-size: 1.8em;
    color: #555;
    margin-bottom: 10px;
}

p {
    font-size: 1.1em;
    line-height: 1.8;
    color: #666;
}

footer {
    text-align: center;
    padding: 10px 0;
    background-color: #333;
    color: #fff;
    position: fixed;
    bottom: 0;
    width: 100%;
}